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Abstract

In this expository article, we give a brief introduction to quantum groups (Hopf
algebras) and their applications to knot theory. Written for MIT 18.704 Seminar in
Algebra.
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1 Introduction

Quantum groups belong to a class of objects known as Hopf algebras, which were born in
the 1940s out of Heinz Hopf’s work in algebraic topology and group cohomology. They
received considerable attention in the last half-century as the theory was developed and
applied in a wide range of other areas of mathematics: Lie theory, representation theory,
combinatorics, algebraic geometry, quantum mechanics, and so on. In this article, we give
a brief introduction to the topic, covering just enough to see an interesting application to
knot theory.

We assume the reader has a basic familiarity with undergraduate algebra: linear algebra
(tensor products over a field), ring theory, group representations, and Lie algebras, though
the latter two are not central to the discussion. We will also assume a basic familiarity with
category theory (functors, natural transformations).

The article is organized as follows. In the remainder of the introduction, we review some
ideas from the representation theory of groups and Lie algebras. Historically, this was not
the original motivation for the definition of a Hopf algebra, but it is the most accessible
one in the context of 18.704. In Section 2, we jump into the algebraic formalisms needed
to define Hopf algebras and several important subclasses: quasitriangular Hopf algebras and
ribbon Hopf algebras. We will use the objects from Section 1.2 and Section 1.3 as running
examples, and we will see that the category f.ModH of finite-dimensional representations of
quasitriangular Hopf algebra H generalizes both sections.

In Section 3, we cast everything into a categorical framework that lends itself to an
appealing diagrammatic theory. This is the most interesting and concrete section of the
article and might demystify some of the formulas from Section 2. We give an application
to knot theory, discussing Drinfeld’s quantum double construction along the way. A small
amount of knot theory is required to fully appreciate this section; for this, we point the
reader to the relevant references.

1.1 Algebras

Throughout the article, we let k denote a field. All tensor products are taken over k. We
begin by reviewing some definitions and notation.

Definition 1.1. A k-algebra is a unital associative ring A equipped with a ring homomor-
phism (the structure map) k → A whose image lies in the center of A. The structure map
endows A with the structure of a k-vector space.

Definition 1.2. Let A be a k-algebra. An A-module (or representation of A) is a k-vector
space V equipped with an action A×V → V denoted (a, v) 7→ a · v, satisfying the following
conditions. The action should be k-linear, i.e. a ·(−) : V → V is a k-linear map for all a ∈ A.
The action should also be associative and respect 1, i.e. (ab) · v = a · (b · v) and 1 · v = v for
all a, b ∈ A and v ∈ V .

A morphism f : V → W of A-modules is a k-linear map respecting the action, i.e. f(a ·
v) = a · f(v) for all a ∈ A and v ∈ V .
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1.2 Group algebras and representations

For a group G, a G-module is a k-vector space V equipped with an action G×V → V that is
k-linear, is associative, and respects 1. The reader should be able to produce the definition
of a G-module morphism.

This is quite similar to Definition 1.2. In fact, for an appropriate choice of k-algebra A,
a G-module is “the same thing” as an A-module. This is the group algebra A = kG.

Definition 1.3 (Group algebra). Let kG denote the following k-algebra: as a vector space,
it is freely generated by the elements of G. The structure map k → G sends 1 to the identity
1 of G. Multiplication in kG is defined using multiplication in G, extended linearly.

It is not hard to check that every G-module is naturally a kG-module and vice versa.1

We now consider two constructions in the category of G-modules.

Definition 1.4 (Tensor module). Given G-modules V,W , the k-vector space V ⊗W carries
a natural G-module structure given by

g · (v ⊗ w) := (g · v)⊗ (g · w).

Definition 1.5 (Dual module). Given a G-module V , its linear dual V ∨ := Homk(V, k)
carries a natural G-module structure given by

g · α = (v 7→ α(g−1 · v)).

Note that the action of G on V ∨ makes use of group inversion. This is to ensure to that
(gh) · α = g · (h · α).

1.3 Lie algebras and representations

Definition 1.6. A Lie algebra is a k-vector space g equipped with a k-bilinear Lie bracket
[ , ] : g× g → g satisfying

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 and [X,X] = 0 for all X, Y, Z ∈ g.

Definition 1.7. A g-module is a k-vector space V with an action g× V → V satisfying the
following conditions. The action should be k-linear, i.e. X · (−) : V → V is a k-linear map
for all X ∈ g. The action should respect the Lie structures on g and Endk(V ), i.e.

[X, Y ] · v = X · (Y · v)− Y · (X · v). (1.3.1)

Somewhat misleadingly, a Lie algebra g may not be an algebra in the sense of Defini-
tion 1.1, since the multiplicative structure given by [ , ] is not necessarily associative nor does
it necessarily have 1. However, it is a fact that every Lie algebra g embeds into a Lie algebra

1Formally, there is an equivalence of categories between G-modules and kG-modules. More abstract
nonsense: this is a free-forgetful adjunction.
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A (i.e. there is an injective morphism of Lie algebras g ↪→ A), where A is a k-algebra, and
the Lie bracket on A is given by the commutator

[X, Y ] := XY − Y X.

Moreover, there exists such an A = U(g) that is universal.2 Here is an explicit construction.
Choose a basis {gi}i∈Λ of g, and let k{gi} denote the free k-algebra with generators gi. Let
I denote the two-sided ideal generated by the elements gigj − gjgi − [gi, gj], and define

U(g) := k{gi}/I.

Then g embeds into U(g) in the obvious way, and U(g) is a k-algebra whose Lie structure
(commutator) is compatible with the Lie structure of the embedded g, essentially by con-
struction. As with all universal objects, U(g) is unique up to unique isomorphism, and it is
termed the universal enveloping algebra of g. One can show that U(g) is to g what kG is to
G: that is, a g-module is “the same thing” as a U(g)-module.

To further the analogy, we now consider g-module analogs of Definitions 1.4 and 1.5.

Definition 1.8 (Tensor module). Given g-modules V,W , the k-vector space V ⊗W carries
a natural g-module structure given by

X · (v ⊗ w) := (X · v)⊗ w + v ⊗ (X · w).

Diligent readers may wish to check for themselves that Equation 1.3.1 holds for V ⊗W .

Definition 1.9 (Dual module). Given a g-module V , its dual V ∨ carries a natural g-module
structure via

X · α := (v 7→ α(−X · v)).

Observe that the minus sign ensures that [X, Y ] · α = X · (Y · α)− Y · (X · α).

2 Hopf algebras

Section 1.2 and Section 1.3 are organized to suggest that there are parallels between group
representations and Lie algebra representations. There is indeed a common structure under-
lying both, and the abstraction leads to the definition of a Hopf algebra.

We will keep to kG, U(g), and their related constructions for running examples in this
exposition. Nonetheless, there exist Hopf algebras with behavior distinct from both of these
examples. Many of them are quantum deformations Uq(g), which recover U(g) in the ap-
propriate limit. It is those Hopf algebras that generate much of the interest in the subject.
However, for the purposes of this introductory article, we will not elaborate on them.

2Categorically stated – any Lie algebra map g → B, where B is a k-algebra equipped with its commutator
Lie bracket, factors uniquely through g → U(g).
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2.1 Coalgebras and bialgebras

We start by recasting Definition 1.1 in a formulation that lends itself to dualization.

Definition 2.1. A k-algebra is a k-vector space A equipped with k-linear maps m : A⊗A→
A and η : k → A, called the multiplication and unit of A, such that the following diagrams
commute:

A⊗ A⊗ A A⊗ A A⊗ k A k ⊗ A

A⊗ A A A⊗ A

m⊗id

id⊗m m
id⊗η

∼= ∼=

η⊗id
m

m

These are the associative law and unit law, respectively. We indeed recover Definition 1.1:
the unit η : k → A is the structure map, and the unit law ensures that η(1) is the multi-
plicative identity in A. For a, b ∈ A, it is customary to notate multiplication by ab instead
of m(a⊗ b).

The dual notion of a coalgebra now follows by reversing all arrows:

Definition 2.2. A k-coalgebra is a k-vector space C equipped with k-linear maps ∆: A →
A ⊗ A and ε : A → k, called the comuliplication and counit of A, such that the following
diagrams commute:

C ⊗ C ⊗ C C ⊗ C C ⊗ k C k ⊗ C

C ⊗ C C C ⊗ C

∆⊗id ∼= ∼=

∆id⊗∆

∆

∆
id⊗ε ε⊗id

These are the coassociative law and counit law, respectively. Comultiplication and coas-
sociativity are generally less intuitive than multiplication and associativity. Nonetheless,
many important properties of coalgebras, bialgebras, and Hopf algebras lend themselves to
verification by computations involving ∆. Such computations rely on Sweedler notation,
which we summarize as follows: for each c ∈ C, we may write ∆(c) =

∑
i c

(i)
1 ⊗ c(i)2 . We often

suppress the index i. For example, the counit law can be expressed as∑
ε(c1)c2 =

∑
c1ε(c2) = c,

and the coassociativity law can be expressed as∑
c11 ⊗ c12 ⊗ c2 =

∑
c1 ⊗ c2 ⊗ c3 =

∑
c1 ⊗ c21 ⊗ c22.

Note that the summations in each of the expressions are not necessarily taken over the
same set of indices. In essence, the Sweedler notation assigns a “standard form” to each
multitensor, analogous to the way one writes the product xyz in an associative algebra to
indicate any one of (xy)z or x(yz).

We work the following exercise and point the reader to [1] or [3] for more details and
examples.
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Proposition 2.3. Let (C,∆, ε) be a coalgebra. For any c ∈ C, we have∑
ε(c1)ε(c2)c3 = c.

Proof. Write ∑
ε(c1)ε(c2)c3 =

∑
ε(c1)c2 = c,

where the first equality used the coassociativity and the counit law, the second used the
counit law directly.

Ideally, one reaches a comfort with comultiplication computations such that the above
proof is completely natural. In case it seems a bit subtle, we give the argument in full detail.
First, there is a k-linear map f : C ⊗ C ⊗ C → C defined on pure tensors by x ⊗ y ⊗ z 7→
ε(x)ε(y)z. The quantity in question is f (

∑
c1 ⊗ c2 ⊗ c3) = f

(∑
i,j c

(i)
1 ⊗ c

(ij)
21 ⊗ c

(ij)
22

)
, by

coassociativity. This is
∑

i,j ε(c
(i)
1 )ε(c

(ij)
21 )c

(ij)
22 . Summing first by j and using the counit law

for c
(i)
2 yields

∑
i ε(c

(i)
1 )c

(i)
2 , and now summing by i and using the counit law for c yields c, as

desired.
We now give some basic examples and constructions involving (co)algebras that will be

useful for later.

Example 2.4. Clearly, k itself has a canonical k-algebra structure. It also has a canonical
k-coalgebra structure whose comultiplication ∆ sends 1 7→ 1 ⊗ 1 and whose counit is the
identity.

Example 2.5. Given k-vector spaces V,W , let τV,W : V ⊗W → W ⊗ V denote the trans-
position map given by v ⊗ w 7→ w ⊗ v. Recall that, given k-algebras (A,mA, ηA) and
(B,mB, ηB), their tensor product A ⊗ B is naturally a k-algebra. Multiplication is given
by m = (mA ⊗ mB) ◦ (id⊗ τ ⊗ id), i.e. (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. The unit is given by
1 7→ 1A ⊗ 1B.

Dually, given k-coalgebras (C,∆C , εC) and (D,∆D, εD), their tensor product C ⊗ D is
naturally a k-coalgebra. Comultiplication is given by ∆ = (id⊗ τ ⊗ id) ◦ (∆C ⊗ ∆D), i.e.
c⊗ d 7→

∑
c1 ⊗ d1 ⊗ c2 ⊗ d2. The counit is given by c⊗ d 7→ ε(c)ε(d).

Example 2.6. Suppose (C,∆, ε) is a coalgebra and (A,m, η) is an algebra. Consider the
k-vector space Homk(C,A). Given f, g ∈ Homk(C,A), their convolution product f ∗ g ∈
Homk(C,A) is defined by f ∗ g := m ◦ (f ⊗ g) ◦∆. Explicitly, this is

f ∗ g = (c 7→
∑

f(c1)g(c2)).

Check that the convolution product is associative, and f ∗ (η ◦ ε) = (η ◦ ε) ∗ f = f . Then
Homk(C,A) forms an algebra with multiplication given by convolution product and unit
given by 1 7→ η ◦ ε.

We are ready to define bialgebras.
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Definition 2.7. A bialgebra is an algebra (A,m, η) equipped with a coalgebra structure
(A,∆, ε) such that ∆: A→ A⊗A and ε : A→ k are maps of k-algebras, i.e. are compatible
with multiplication and respect the unit. Explicitly, the following diagrams commute:

H ⊗H H ⊗H ⊗H ⊗H H H ⊗H

H H ⊗H k k ⊗ k

m

∆⊗∆

(m⊗m)◦(id⊗τ⊗id)

∆

∆

η

∼=

η⊗η

H ⊗H k ⊗ k H k

H k k

ε⊗ε

m ∼=

ε

ε

η
∼=

Satisfyingly, the requirement that ∆ and ε are maps of k-algebras is equivalent to the
requirement that m and η are maps of k-coalgebras. The proof is to write down what the
latter means and realize that we have simply redrawn the above diagrams.

Example 2.8. Recall the group algebra kG from Definition 1.3. It has a bialgebra structure
with comultiplication and counit defined (on basis elements g ∈ G) by

∆(g) := g ⊗ g and ε(g) := 1 for all g ∈ G.

Example 2.9. Recall the universal enveloping algebra U(g) from Section 1.3. It has a
bialgebra structure with comultiplication and counit defined (on generators ξ ∈ g) by

∆(ξ) := ξ ⊗ 1 + 1⊗ ξ and ε(ξ) := 0 for all ξ ∈ g.

The reader may wish to verify the claims being made in Examples 2.8 and 2.9: coasso-
ciativty, counit law, compatibility with multiplication and unit.

At this point, we have enough structure to make good on part of our promise from the
outset of this section. Suppose (H,m, η,∆, ε) is a bialgebra. Using the algebra structure on
H, we can speak of H-modules (representations) in the sense of Definition 1.2.3 We denote
the category of H-modules by ModH , and the category of finite-dimensional H-modules by
f.ModH .

Owing to the coalgebra structure on H, the category of H-modules distinguishes itself
from the category of modules over an arbitrary k-algebra. First, given V,W ∈ ModH , there
is a natural H-module structure on V ⊗W . The action of H is given by

h · (v ⊗ w) :=
∑

h1v ⊗ h2w.

It follows from coassociativity of ∆ that the action of H on V ⊗W is associative, as required.
Second, k itself is naturally an H-module, with the action of H on k determined by

h · 1 := ε(h).

3Dually, there is a notion of an H-comodule, given by a coaction of H on a k-vector space. We won’t
need this, though.
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These two properties are compatible in the sense that the canonical isomorphisms

V ⊗ k ∼= V ∼= k ⊗ V

are not just isomorphisms of k-vector spaces, but isomorphisms of H-modules: they respect
H-actions. Indeed, this follows from the counit law.

2.2 Hopf algebras

Definition 2.10. A Hopf algebra is a bialgebra H in which the identity map is convolution-
invertible in Homk(H,H), with inverse S. (See Example 2.6.) Explicitly, this means that
for all h ∈ H, ∑

S(h1)h2 =
∑

h1S(h2) = η(ε(h)) = ε(h)1H . (2.2.1)

The element S is called the antipode.

Observe that the antipode of a Hopf algebra is unique because it is the inverse of an
element in the algebra Homk(H,H).

Example 2.11. The group bialgebra kG is a Hopf algebra with antipode S : kG → kG
defined by

S(g) = g−1.

Example 2.12. The bialgebra U(g) is a Hopf algebra with antipode S : U(g) → U(g) defined
on the generators ξ ∈ g by

S(ξ) = −ξ.

Consider the above two examples along with the comultiplications and counits defined
in Examples 2.8 and 2.9. Classically, a Lie algebra g was the tangent space at the identity
element of a matrix group G, i.e. a “linearization” or “derivative” of G, in some sense. We
see this intuition reflected in the corresponding Hopf algebra structures of kG and U(g).

As Example 2.11 suggests, we can think of the antipode of a Hopf algebra as a kind of
inversion operator. Indeed, one can show that, in any Hopf algebra, the antipode S satisfies
S(gh) = S(h)S(g). In fact, we have the following:

Proposition 2.13. The antipode S : H → H of a Hopf algebra H is both an antihomomor-
phism of algebras and an antihomomorphism of coalgebras. Explicitly, for any g, h ∈ H,

S(hg) = S(g)S(h), S(1H) = 1H ,

∆(S(h)) =
∑

S(h2)⊗ S(h1), ε(S(h)) = ε(h).

The proof of Proposition 2.13 amounts to some clever Sweedler-type computations, which
we omit. See [1] for details.

Corollary 2.13.1. If a Hopf algebra H is commutative as an algebra or cocommutative as
a coalgebra (i.e. τ ◦∆ = ∆), then the antipode S is an involution.
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We give a brief sketch of the proof: if H is commutative, then Equation 2.2.1 yields∑
S(h2)h1 = ε(h)1H . Using this along with the identities in Proposition 2.13, one computes

the convolution S ∗ S2 ∈ Homk(H,H) and arrives at η ◦ ε, forcing S2 to be the identity on
H. The cocommutative case follows a similar argument.

The examples kG and U(g) are both cocommutative, and their respective antipodes are
indeed involutions. In general, however, a Hopf algebra need not have involutive antipode.
In Section 2.3, we will see that if H is quasitriangular, then the square of its antipode is
well-behaved.

We now describe a construction that will be important in Section 3.3.

Example 2.14. If a Hopf algebra (H,m, η,∆, ε, S) is finite-dimensional (like kG for a finite
group G), then the linear dual H∗ has a Hopf algebra structure (H∗,∆∗, η′,m∗, ε′, S∗). Here,
∆∗ : (H ⊗H)∗ → H∗, m∗ : H∗ → (H ⊗H)∗ and S∗ : H∗ → H∗ are the duals of ∆, m, and S,
where we use the finite-dimension assumption on H to canonically identify (H ⊗H)∗ with
H∗ ⊗ H∗. (Namely, if h1, . . . , hn ∈ H is a basis, then the isomorphism sends (hi ⊗ hj)

∨ 7→
h∨i ⊗ h∨j .) The unit η′ is given by 1 7→ ε, and the counit ε′ is given by f 7→ f(1H).

For a concrete example, let (kG∗,mkG∗ , ηkG∗ ,∆kG∗ , εkG∗ , SkG∗) denote the dual of the
group Hopf algebra (kG,m, η,∆, ε, S) for a finite group G. Take the standard basis {g ∈ G}
for kG, with dual basis {g∨}. For any g, h ∈ G, we have

mkG∗(g∨ ⊗ h∨) = (g ⊗ h)∨ ◦∆ =

{
0 g ̸= h

g∨ g = h
,

∆(f) =
∑
g,h∈G

f(gh)(g∨ ⊗ h∨) for any f ∈ kG∗,

1kG∗ =
∑
g∈G

g∨, εkG∗(g∨) = g∨(1G) =

{
0 g ̸= 1G

1 g = 1G
,

SkG∗(g∨) = g∨ ◦ S = (g−1)∨.

We leave it to the reader to check that kG∗ is a Hopf algebra as such.

Finally, we consider the category ModH . Earlier, we saw that the bialgebra structure on
H allows for an H-module structure on the tensor product of two H-modules. Now, the
antipode on H allows for a natural H-module structure on the linear dual of an H-module.
Suppose H acts on V . Then H acts on V ∗ by

h · f = (v 7→ f(S(h) · v)).

The antihomomorphism property of S ensures that the action is associative. In the cases
kG and U(g), we indeed recover Definitions 1.5 and 1.9.

The categoryModH now has both of the desired properties presented in Section 1: tensors
and duals. Here is another property it generalizes.

Definition 2.15. A Hopf algebra H is itself canonically an H-module via the adjoint action,
given by

h · g :=
∑

h1gS(h2).

The adjoint action is notated adh(g).
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In the case of kG, the adjoint action is conjugation: for basis elements h, g ∈ G, we
have adh(g) = hgh−1. In the case of U(g), the adjoint action already has a name in Lie
theory, and indeed coincides with the above definition: for generators ξ, η ∈ g, we have
adξ(η) = ξη − ηξ = [ξ, η].

2.3 Quasitriangular and ribbon Hopf algebras

We now define two important extensions of the Hopf algebra structure. This section may
seem rather opaque, but we promise that it will feel more motivated once the diagrammatic
theory is introduced in Section 3.2.

Definition 2.16. A quasitriangular Hopf algebra (also known as a quantum group) is a Hopf
algebra H along with a choice of invertible element R ∈ H ⊗H such that:

(i) (τ ◦∆)(h) = R ·∆(h) ·R−1 for all h ∈ H,

(ii) (∆⊗ id)(R) = R13R23,

(iii) (id⊗∆)(R) = R13R12.

Here, the terms Rij ∈ H⊗H⊗H are given by R12 = R⊗ 1H , R23 = 1H ⊗R, and if we write

R =
∑

iR
(1)
i ⊗R

(2)
i , then (with indices suppressed) R13 =

∑
R(1) ⊗ 1H ⊗R(2).

Observe that any cocommutative Hopf algebra, such as kG or U(g), can trivially be given
a quasitriangular structure with R = 1H ⊗ 1H . We defer a nontrivial example to Section 3.3
when we discuss the quantum double of the group algebra.

The quasitriangular structure R interacts nicely with the antipode S and the counit ε;
in fact S is invertible in a quasitriangular Hopf algebra. The identities and their details can
be found in [3]. We content ourselves with following two:

Proposition 2.17 (Yang-Baxter relation). The element R satisfies

R12R13R23 = R23R13R12.

Proposition 2.18. In a quasitriangular Hopf algebra H, the element u :=
∑
S(R(2))R(1) is

invertible, and for all h ∈ H,
S2(h) = uhu−1.

We can interpret Proposition 2.18 as a way to “salvage” Corollary 2.13.1 in case H is not
(co)commutative: even if the antipode is not involutive, its square is well-behaved (an inner
automorphism), at least for quasitriangular Hopf algebras. The proofs of these properties
are computations, which we defer again to [3].

Finally, we define one more class of Hopf algebras. The definition will seem opaque
and unmotivated, but we include it anyways: it will serve as a point of reference for Def-
inition 3.10 on ribbon categories, which are needed to correctly formulate our method for
producing quantum knot invariants in Section 3.3. They also enrich the diagrammatic theory
in Section 3.2.

Definition 2.19. A ribbon Hopf algebra is a quasitriangular Hopf algebra H for which there
exists an element ν ∈ H lying in the center of H such that

ν2 = uS(u), S(ν) = ν, ε(ν) = 1, ∆(ν) = (R21R12)
−1(ν ⊗ ν).
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3 Categories and Knots

3.1 Monoidal categories

The category of H-modules for a Hopf algebra fits into a general class of categories.

Definition 3.1. A strict monoidal category is a category C equipped with a functor ⊗ : C ×
C → C and a unit object 1 ∈ C such that, for any objects V,W,Z and morphisms f, g, h in
C, we have

(V ⊗W )⊗ Z = V ⊗ (W ⊗ Z), (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) (3.1.1)

and
V ⊗ 1 = V = 1⊗ V, f ⊗ id1 = f = id1⊗f. (3.1.2)

We dispose of a technicality before proceeding. There is a more general notion of a
monoidal category, for which the left equalities 3.1.1 and 3.1.2 are replaced by natural iso-
morphisms ΦV,W,Z : (V ⊗W )⊗Z → V ⊗(W⊗Z) as well as ℓV : V ⊗1 → V and rV : 1⊗V → V
satisfying certain compatibility conditions (keywords: pentagon diagram, triangle diagram).
Monoidal categories are the correct setting for most of what follows. For example, consider
the prototypical monoidal category, the category Veck of k-vector spaces with the usual ten-
sor product, unit object k, and the usual canonical isomorphisms (V ⊗W )⊗Z ∼= V ⊗(W⊗Z)
and V ⊗ k ∼= V ∼= k ⊗ V . It would be incorrect to declare (for example) that V ⊗ k and V
are literally the same object, so Veck is not strict monoidal.

However, notating calculations in a monoidal category quickly becomes cumbersome, so
it is customary to suppress Φ, ℓ, and r. By a so-called coherence theorem of MacLane,
nothing is lost in doing so, and for all practical purposes we may pretend like we are working
in the strict setting. We readily adopt this convention for everything that follows.

Example 3.2. Suppose (H,m, η,∆, ε) is a bialgebra. Then ModH is a monoidal category.
Indeed, we have seen that if H acts on V and W , then the coalgebra structure determines
an action of H on V ⊗W , so we can take tensor products in ModH . Moreover, we have a
unit object k with canonical isomorphisms V ⊗ k ∼= V ∼= k ⊗ V in ModH .

In Section 2, we progressively “upgraded” from from algebra to bialgebra to Hopf algebra
to quasitriangular Hopf algebra and so on. We’ll parallel this by progressively “upgrading”
our category to obtain the corresponding generalizations.

3.1.1 Rigid categories

Definition 3.3. A rigid category is a monoidal category C such that each object V ∈ C is
equipped with a triple (V ∗, evV , coevV ) where V ∗ is an object of C and evV : V ∗ ⊗ V → 1
and coevV : 1 → V ⊗ V ∗ are morphisms such that

(id⊗ evV ) ◦ (coevV ⊗ id) = idV and (evV ⊗ id) ◦ (id⊗ coevV ) = idV ∗ . (3.1.3)

The object V ∗ is called the dual of V , and the morphisms evV and coevV are called
evaluation and coevaluation, respectively.

11



The prototypical rigid category is f.Veck, the category of finite-dimensional k-vector
spaces, where V ∗, evV , and coevV take their usual meanings:

V ∗ = Homk(V, k), evV (ϕ⊗ v) = ϕ(v), coevV (1) =
n∑

i=1

vi ⊗ v∨i ,

where v1, . . . , vn ∈ V is a chosen basis and v∨1 , . . . , v
∨
n ∈ V ∗ is the dual basis. (Recall that

coevV is independent of this choice.)

Example 3.4. Suppose (H,m, η,∆, ε, S) is a Hopf algebra. Then f.ModH is a rigid category
with duals and (co)evaluation given by those of the underlying k-vector spaces. Indeed, we
saw that if H acts on V , then the antipode on H determines an action of H on V ∗, so we
can take duals in f.ModH .

If f : V → W is a morphism in a rigid category, the dual morphism f ∗ : W ∗ → V ∗ is
defined by

f ∗ = (evW ⊗ id) ◦ (id⊗f ⊗ id) ◦ (id⊗ coevV ).

In particular, given a rigid category C, there is a dualizing functor (−)∗ : C → Cop sending
objects and morphisms to their duals. A natural question to ask of any rigid category is
whether the double dual is naturally isomorphic to the identity functor, as one would expect
from linear algebra.

In the literature, the categories of Definition 3.3 are often called left rigid. Indeed, there
is a notion of a right dual, which is an object V ∗ along with morphisms evV : V ⊗ V ∗ → 1
and coevV : 1 → V ∗ ⊗ V satisfying

(evV ⊗ id) ◦ (id⊗ coevV ) = idV , and (id⊗ evV ) ◦ (coevV ⊗ id) = idV ∗ . (3.1.4)

Another question to ask of a rigid category is whether it has right duals and whether the
left and right duals agree.

As we will see, the answer to both questions is yes under certain extra conditions.

3.1.2 Braided categories

In Veck, there is a canonical isomorphism V ⊗W → W ⊗ V given by the transposition map
τ . This is the next property we wish to categorify. First, note that τ has the following
characterization: the map V ⊗W ⊗ Z → W ⊗ Z ⊗ V given by transposing V,W and then
V, Z is same as the map given by a single transposition applied to V and W ⊗Z. This leads
us to:

Definition 3.5. A braided category is a monoidal category C equipped with a natural iso-
morphism Ψ: ⊗ → ⊗op such that, for any objects V,W,Z ∈ C,

ΨV,W⊗Z = (ΨV,Z ⊗ id) ◦ (id⊗ΨV,W ) and ΨV⊗W,Z = (ΨV,Z ⊗ id) ◦ (id⊗ΨW,Z). (3.1.5)

As a sanity check, we have:

Proposition 3.6. For any object V in a braided category,

ΨV,1 = idV = Ψ1,V .

12



Proof. We have ΨV,1 = ΨV,1⊗1 = (ΨV,1⊗ id) ◦ (id⊗ΨV,1) = ΨV,1 ◦ΨV,1, where we are viewing
the far left and right sides as morphisms of V . The first and third equalities use 3.1.2 and the
second equality uses 3.1.5. But ΨV,1 is an isomorphism, so it must be the identity. Similar
reasoning applies for Ψ1,V .

Proposition 3.7 (Yang-Baxter relation). For any objects V,W,Z in a braided category, we
have

(ΨW,Z ⊗ id) ◦ (id⊗ΨV,Z) ◦ (ΨV,W ⊗ id) = (id⊗ΨV,W ) ◦ (ΨV,Z ⊗ id) ◦ (id⊗ΨW,Z).

It is not hard to prove Proposition 3.7 directly using 3.1.5 and naturality of the braiding.
However, we defer a proof until Section 3.2 when we can give a visual demonstration. In any
case, in light of the similarity with Proposition 2.17, the following proposition may not be
surpsising:

Proposition 3.8. Suppose (H,m, η,∆, ε, S, R) is a quasitriangular Hopf algebra. Then
ModH is a braided category, with braiding ΨV,W : V ⊗W → W ⊗ V given by

v ⊗ w 7→ τ(R · (v ⊗ w)) =
∑

R(2)w ⊗R(1)v. (3.1.6)

The proof is a computation, which we omit. The computation shows that the implication
also goes the other way: any braiding on ModH is necessarily given by 3.1.6 for some R ∈
H ⊗H satisfying the conditions of Definition 2.16.

It turns out that we are now able to answer our question about double duals:

Proposition 3.9. For any object V in a rigid braided category, there exists a canonical
isomorphism uV : V → V ∗∗ given by

uV := (evV ⊗ id) ◦ (ΨV,V ∗ ⊗ id) ◦ (id⊗ coevV ∗)

with inverse
u−1
V := (id⊗ evV ∗) ◦ (ΨV ∗∗,V ⊗ id) ◦ (id⊗ coevV ).

We defer the proof until Section 3.2.

3.1.3 Ribbon categories

We introduce one more categorical specialization.

Definition 3.10. A ribbon category is a rigid braided category C equipped with a natural
isomorphism θ : id → id, called the twist, such that

θV ∗ = (θV )
∗, θ1 = id1, θV⊗W = Ψ−1

W,V ◦Ψ−1
V,W ◦ (θV ⊗ θW ). (3.1.7)

Compare Definitions 3.10 and 2.19. It is not surprising that:

Proposition 3.11. If (H,m, η,∆, ε, S, R, ν) is a ribbon Hopf algebra, then the category
f.ModH is ribbon, where the morphism θV : V → V is given by the action of ν.

We are now also able to answer our question about right duals:

Proposition 3.12. For any object V in a ribbon category, the dual V ∗ is a right dual, with

evV := evV ◦(id⊗θ−1
V ) ◦ΨV,V ∗ , coevV := ΨV,V ∗ ◦ (θ−1

V ⊗ id) ◦ coevV .
We omit proofs of these propositions but give visual intuition for Proposition 3.12 in

Section 3.2. See [3] for details.
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(a)

(b)

(c)

(d) (e)

Figure 1: Morphisms and basic operations

3.2 The diagrammatic theory

In this section and the next, we will make light reference to notions from knot theory, like
tangles, Reidemeister moves, and writhe. The reader may consult [3] or [2] for a more
detailed review of the relevant knot theoretic concepts.

The basic idea behind the diagrammatic theory is to represent morphisms in a braided
monoidal category with tangles (i.e. possibly multi-strand, open-ended knot diagrams with
fixed endpoints). This allows one to use spatial intuition to deduce or prove algebraically
tedious identities. It is also rather elegant in its own right.

First suppose C is any category. We may represent any morphism f : V → W pictorally
as in Figure 1(a). Nodes are labeled by objects, and segments represent morphisms. We
read from top to bottom. The identity morphism is special, and is indicated by an unlabeled
segment. The composition of two morphisms is represented by vertical concatenation, as in
Figure 1(b).

Now suppose C is monoidal. The idea is to represent ⊗ using horizontal concatenation.
Given two morphisms f : V → W and g : V ′ → W ′, the morphism f ⊗ g : V ⊗ V ′ →
W ⊗W ′ is shown in Figure 1(c). The unit object 1 is usually left unindicated in light of
Equation 3.1.2. Functoriality of ⊗ implies that all three of Figures 1(c), 1(d), and 1(e)
represent the same morphism. Informally, this simply means that we can freely “slide”
morphisms along unlabeled segments.

Now suppose C is rigid. We introduce special “cup” and “cap” symbols for evaluation
and coevaluation, keeping in mind that 1 is left unindicated. See Figures 2(a) and 2(b).
Keep in mind that functoriality of ⊗ still applies to evV and coevV ; namely, we can slide
cups and caps up and down pairs of parallel unlabeled segments. The (co)evaluation axioms
3.1.3 say that we can “smooth out bends”. See Figure 2(c).

Now suppose C is rigid braided. We represent the braiding map ΨV,W using the crossing
shown in Figure 3(a), and its inverse Ψ−1

V,W using the crossing with opposite over and under
strand. The fact that they are inverses tells us that we can perform the braid cancellation
moves in Figure 3(b), which are the Type II Reidemeister moves from knot theory.

Much like functoriality of ⊗ allows us to slide morphisms up and down, naturality of Ψ

14



(a) evV (b) coevV

(c)

Figure 2: (Co)evaluation maps and cup/cap cancellation

(a) ΨV,W

(b)

Figure 3: Braid and braid cancellation

(a)

Figure 4: Braid naturality
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allows us to “pull morphisms through crossings”. See Figure 4(a).
Roughly speaking, Proposition 3.6 tells us that the vertical alignment of nodes in our

picture is irrelevant so long as the relative order of the nodes in each row is correct. Indeed,
we can think of moving nodes horizontally as simply braiding with 1.

Example 3.13. We show that Figures 5(a) and 5(d) represent the same morphism V →
V ⊗V ∗⊗V . First, we use 3.1.5 to rewrite the two braidings in Figure 5(a) as single braiding
between V and V ⊗ V ∗, and then redraw the cap so that 1 is not hidden. This yields
5(b). Then we apply naturality to pull the coevaluation map through the crossing, yielding
5(c). Finally, we use Proposition 3.6 and to ignore the braiding ΨV,1, and then change the
coevaluation back into the cap.

(a) (b) (c) (d)

Figure 5

Example 3.14. Let us prove Proposition 3.7, that the braiding Ψ satisfies the Yang-Baxter
relation. The proof is given in Figure 6, where the aim is to prove that the first and last
diagrams represent the same morphism; the steps are very similar to those of Example 3.13.
Pictorially, the Yang-Baxter relation amounts to the Type III Reidemeister move from knot
theory.

Example 3.15. Let us prove Proposition 3.9, that the morphisms uV and u−1
V are in fact

inverse isomorphisms between V and its double dual V ∗∗. We will only check that u−1
V ◦uV =

idV , the other verification being similar. Pictorially, u−1
V ◦ uV is illustrated in Figure 7(a).

Unlike in the previous examples, we will be fast and loose with the steps. Roughly speaking,
the step from 7(a) to 7(b) uses naturality to pull a strand under a large part of the picture;
the step from 7(b) to 7(c) uses sliding moves and a cup/cap cancellation from Figure 2(c);
the step from 7(c) to 7(d) uses Example 3.13; and the final step uses another cup/cap
cancellation.

The previous example makes the connection to knot theory rather explicit: roughly
speaking, we can manipulate the pictures as if the segments were components of a tangle,
without changing the morphism it represents. That said, the reader may not find the dia-
grammatic calculus rigorous enough for proof. This is fair. There are indeed caveats and
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(a) (b) (c) (d)

Figure 6: Yang-Baxter relation, pictorially

(a) (b)
(c) (d) (e)

Figure 7: Computing u−1
V ◦ uV = idV pictorially
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details that deserve care – for example, the morphism that a diagram represents is not a
full knot invariant, but rather framed one: we are not allowed to change the writhe. We will
not elaborate on the details, however, as the aim is only to give a general sense of the idea.
Rigorous or not, the visual method is appealing – purely algebraic approaches to the theory
do not make it nearly as easy to see at a glance why the claims like Proposition 3.9 should
be true in the first place.

In the spirit of unrigorous intuition-building, we consider the case where C is ribbon, but
do not prove anything. Instead, we simply state what the pictures should be and check that
they make sense knot-theoretically.

The pictures for the twist map θV and its inverse θ−1
V are given in Figure 8(a). Perhaps

unsurprisingly, they are literally twists. Pictorially, the third requirement in Definition 3.10
is given by Figure 8(c). We promised in Section 3.1.3 to give visual intuition for Proposi-
tion 3.12. This is shown in Figure 8(d). One can check that the equivalences claimed in
Figures 8(c) and 8(d) do indeed hold if we pretend they are tangle diagrams up to isotopy
and writhe-preserving Reidemeister moves.

(a) θV (b) θ−1
V

(c) (d) evV

Figure 8: The twist map θV

Our diagrammatic calculus now includes the twist θV as well as a new cup and cap
for evV and coevV , respectively. We add one more feature. Consider a morphism “built”
out of elementary morphisms (i.e. braidings, cups, caps, unlabeled segments, and tensors
theoreof). Observe that for each component (i.e. strand) of such a diagram, each node
along that component is labeled either V or V ∗ for some object V . The reader may verify
that there is a unique way to orient the component such that the tangent vector to the
component at each node is downward-pointing at each node labeled V and upward-pointing
at each node labeled V ∗. For example, cups and caps get the orientations shown in Figure 9.

Conversely, an orientation dictates a labeling of the nodes with V and V ∗. Oriented
diagrams will be convenient when we discuss quantum knot invariants below.

At this point, we have seen the basic ideas and constructions needed for main example
of this article. For more details on the diagrammatic theory, we encourage the reader to
consult [3]. The reader may also consult [4], which contains a more expansive, thorough,
and precise treatment (though with notational conventions differing from ours).
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(a) evV (b) evV (c) coevV (d) coevV

Figure 9: Oriented cups and caps in a ribbon category

3.3 Knot invariants

We have seen that knot theory can help us do algebra. Conversely, algebra can help us do
knot theory. This idea lead to the development of quantum knot invariants, and the idea is
as follows.

(i) Given an oriented knot diagram, read it as a morphism 1 → 1 in a ribbon category C.

(ii) Pick a ribbon Hopf algebra H and an H-module V and put C = ModH .

(iii) Decompose the knot diagram as a composition of elementary morphisms and label the
nodes of diagram with V and V ∗ as appropriate. See Figure 10(a).

(iv) We now have a morphism k → k in ModH . It is necessarily scalar multiplication by
some constant, which is our invariant.

(a) evV ◦ΨV,V ∗ ◦ coevV

(b) Computing an intermediate morphism from CG∗⊗
CG⊗ CG⊗ CG∗ to itself

Figure 10

Step (iii) is possible for any diagram because our category is ribbon. For example, the
unknot diagram (a circle with no crossings) cannot be decomposed as such unless we have
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both left and right (co)evaluation maps. Conveniently, the orientation on the knot fixes
a choice of labeling – without it, we would not be able to tell between evV and evV (for
example) and there are two possible labelings.

To illustrate the method, we give the simplest concrete example within the scope of this
article that produces an interesting knot invariant: namely, given a knot K, the invariant is
the number of group homomorphisms from the knot group π1(S

3 \K) to a fixed group G.4

For this, we will need a more “interesting” Hopf algebra than kG. Recall that kG is
cocommutative, and the obvious braiding given by R := 1G ⊗ 1G yields ΨV,W = Ψ−1

W,V . One
can then check that knot invariants produced using kG-modules will be unable to distinguish
between two knots that differ only in over/under crossing data.

Instead, we will take the Drinfeld double of kG. This is a general construction that takes
any finite-dimensional Hopf algebraH and produces quasitriangular Hopf algebraD(H) with
nontrivial braiding. First, recall from Example 2.14 that H∗ is canonically a Hopf algebra.

Definition 3.16. The Drinfeld double is the k-vector space D(H) := H∗ ⊗ H endowed
with the following Hopf algebra structure. The coalgebra structure on D(H) is given by the
canonical product coalgebra structure (see Example 2.5), namely

∆(ϕ⊗ h) :=
∑

ϕ1 ⊗ h1 ⊗ ϕ2 ⊗ h2 and ε(ϕ⊗ h) := εH∗(ϕ)εH(h).

Multiplication, on the other hand, is defined by

(ϕ⊗ h)(ψ ⊗ g) :=
∑

ψ1(SH(h1))ψ3(h3)(ϕψ2 ⊗ h2g).

The multiplictative unit is 1H∗ ⊗ 1H , and the antipode is given by

S(ϕ⊗ h) = (1H∗ ⊗ SH(h))(S
−1
H∗(ϕ)⊗ 1H).

The Drinfeld double is quasitriangular, where if v1, . . . , vn is any basis of H with dual basis
v∨1 , . . . , v

∨
n ,

R :=
n∑

i=1

(v∨i ⊗ 1H)⊗ (1H∗ ⊗ vi).

For us, the relevant example is H = CG, the complex group algebra. (Diligent readers
wishing to verify that D(H) satisfies all the axioms of a quasitriangular Hopf algebra may
find more use in verifying this special case.) Multiplication in D(CG) is given for any
a, b, h, g ∈ G by

(a∨ ⊗ h)(b∨ ⊗ g) := a∨(hbh−1)∨ ⊗ hg.

Notice that this formula resembles that of the multiplication formula in a semidrect product
of groups. The reader may wish to consult [3] or search for references on crossed products
and crossed modules for more details on this analogy.

As it happens, D(CG) is a ribbon Hopf algebra. Readers wishing to check this should
first find R =

∑
h,g∈G(g

∨⊗1G)⊗ (h∨⊗ g), then (recall Proposition 2.18) u =
∑

g∈G g
∨⊗ g−1,

then S(u) = u, and that taking the ribbon element ν to be equal to u works.

4The knot group π1(S
3 \K) is the fundamental group of the knot’s complement in the three-sphere.
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In general, there is a canonical action of D(H) on H, given by

(ϕ⊗ h) · v :=
∑

ϕ(adh(v)1) adh(v)2.

When H = CG, this becomes

(ϕ⊗ h) · a = ϕ(hah−1)hah−1

for all a ∈ G.
Putting it all together:

Proposition 3.17. Let G be a finite group and K be a knot. In the procedure described at
the beginning of Section 3.3, taking D(CG) as the ribbon Hopf algebra and CG as the module
yields the invariant

#Hom(π1(S
3 \K), G).

We sketch the proof and encourage readers familiar with the knot group to work out the
details. Using R =

∑
h,g∈G(g

∨ ⊗ 1G) ⊗ (h∨ ⊗ g) ∈ D(CG), we compute the braiding maps

involving CG and CG∗. For example, ΨCG,CG(a⊗b) = aba−1⊗a for any a, b ∈ G. Figure 10(b)
shows this computation in the context of an intermediate morphism id⊗ΨCG,CG ⊗ id within
a knot diagram. In general, the braiding maps will correspond to “conjugation at each
crossing”.

In computing the morphism C → C represented by the knot diagram, one encounters a
large summation where each term acts as an indicator variable for a labeling of the “arcs”
of the knot diagram with elements of G. The term evaluates to 1 if and only if the labeling
is “compatible” with the conjugations occurring at the crossings. Those familiar with the
Wirtinger presentation of the knot group will recognize that a compatible labeling is precisely
the data needed to determine a group homomorphism π1(S

3\K) → G, where each generator
of π1(S

3 \K) is sent to the group element labeling its corresponding arc.
A final remark: recall the quantized enveloping Lie algebra Uq(g) mentioned at the

beginning of Section 2. Applying the quantum knot invariant method with Uq(sl2) and
its two-dimensional representation yields a knot invariant (parametrized by q). This knot
invariant turns out to be a generalized version of the celebrated Jones polynomial.
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